Assessment of Micronutrient Status in Critically ill Children: Challenges and Opportunities
Nutrients 2017, 9, 1185; doi:10.3390/nu9111185
Duy T. Dao 1,+ , Lorenzo Anez-Bustillos 1,+, Bennet S. Cho , Zhilling Li , Mark Puder1, and Kathleen M. Gura 3,*
- Vitamin D and Magnesium category listing has
368 items along with related searches - Vitamin D and Omega-3 category listing has
408 items along with related searches - Vitamin D and Vitamin K category listing has
157 items along with related searches - Vitamin D and Boron category listing has
36 items along with related searches - Vitamin D and Calcium category listing has
228 items along with related searches - Iodine category listing has
31 items along with related searches - Zinc category listing has
89 items along with related searches items in BOTH of categories: Infant-Child and Trauma/Surgery
- Give ICU children a bolus dose of 10,000 IU of vitamin D per kg – RCT underway Sept 2024
- Sepsis is fought by Vitamin D in 9 ways – Feb 2023
- Fewer drugs needed after cardiac surgery if higher levels of vitamin D (Chinese children) – July 2021
- 3X less Septic Shock in children with sepsis getting 150,000 IU of Vitamin D - RCT June 2020
- PICU children with low vitamin D levels have worse health scores (PRISM-III) – Feb 2020
- Vitamin D levels dropped 42 percent immediately after pediatric cardiac surgery – Dec 2019
- Septic children have low Vitamin D (54 studies, ignored Vitamin D Receptor) – meta-analysis April 2019
- Candida infections in PICU reduced by Vitamin D in yogurt – RCT Feb 2019
- Children entering ICU with low vitamin D were 3.5 X more likely to have a poor ICU score– Oct 2018
- Critically ill children with low vitamin D: 2.5 X more likely to die or stay 2 days longer - meta-analysis Nov 2017
- Micronutrients (such as Vitamin D) for critically ill children – review Oct 2017
- Critically ill children – randomized clinical trial to give single doses of up to 400,000 IU of vitamin D – 2019
- Vitamin D deficiency in pediatric critical illness: Time to move on from observational studies – Nov 2016
- Low vitamin D in Pediatric ICU – 5 times more ill (morbidity) – Spanish Nov 2016
- Children in Intensive Care need Vitamin D loading dose of 10000 IU per kg (nearing a consensus) - Oct 2016
- Children stayed in ICU 3.5 days longer if low vitamin D – Dec 2015
- Rapid Normalization of Vitamin D in Critically Ill Children (10,000 IU per kg) – clinical trial
- Congenital Heart problems - vitamin D levels drop even lower after surgery, loading dose probably required - thesis 2015
- Infant in ICU much more likely to die if low vitamin D – Nov 2015
- 5 out of 6 children who died in pediatric critical care unit had low vitamin D – May 2014
- Hospitalization consumes vitamin D in children – March 2014
- Congenital heart surgery dropped vitamin D levels by 40 percent – July 2013
- Vitamin D deficient children stayed in ICU almost 2 days longer – Sept 2012
- Sepsis is both prevented and treated by Vitamin D - many studies
 Download the PDF from VitaminDWikiAbstract: Micronutrients refer to a group of organic vitamins and inorganic trace elements that serve many functions in metabolism. Assessment of micronutrient status in critically ill children is challenging due to many complicating factors, such as evolving metabolic demands, immature organ function, and varying methods of feeding that affect nutritional dietary intake. Determination of micronutrient status, especially in children, usually relies on a combination of biomarkers, with only a few having been established as a gold standard. Almost all micronutrients display a decrease in their serum levels in critically ill children, resulting in an increased risk of deficiency in this setting. While vitamin D deficiency is a well-known phenomenon in critical illness and can predict a higher need for intensive care, serum concentrations of many trace elements such as iron, zinc, and selenium decrease as a result of tissue redistribution in response to systemic inflammation. Despite a decrease in their levels, supplementation of micronutrients during times of severe illness has not demonstrated clear benefits in either survival advantage or reduction of adverse outcomes. For many micronutrients, the lack of large and randomized studies remains a major hindrance to critically evaluating their status and clinical significance.
Sorry, did not have time to extract the excellent article - Founder, VitaminDWiki
B1 Thiamine Aerobic and carbohydrate metabolism
B2 Riboflavin Oxidation-Reduction reactions: FAD and FMN
B3 Niacin Oxidation-Reduction reactions: NAD and NADP
B5 Pantothenic acid Acylation and acetylation: coenzyme A
B6 Pyridoxal Phosphate Metabolism of proteins, carbohydrates, and fats
B7 Biotin Carboxylase enzymes
B9 Folate DNA and RBC synthesis
B12 Cobalamin DNA, RBC, and myelin synthesis
Vitamin C
Vitamin A
Vitamin D
Vitamin E
Vitamin K
Iron
Calcium
Magnesium
Zinc
Selenium
CopperReferences
- Shenkin, A. Micronutrients in health and disease. Postgrad. Med. J. 2006, 82, 559-567. [CrossRef] [PubMed]
- Thurnham, D.I.; Northrop-Clewes, C.A. Inflammation and biomarkers of micronutrient status. Curr. Opin. Clin. Nutr. Metab. Care 2016,19, 458-463. [CrossRef] [PubMed]
- Obeid, R.; Herrmann, W. Homocysteine, folic acid and vitamin B12 in relation to pre- and postnatal health aspects. Clin. Chem. Lab. Med. 2005, 43,1052-1057. [CrossRef] [PubMed]
- Opladen, T.; Ramaekers, V.T.; Heimann, G.; Blau, N. Analysis of 5-methyltetrahydrofolate in serum of healthy children. Mol. Genet. Metab. 2006, 87, 61-65. [CrossRef] [PubMed]
- Minet, J.C.; Bisse, E.; Aebischer, C.P.; Beil, A.; Wieland, H.; Lutschg, J. Assessment of vitamin B-12, folate, and vitamin B-6 status and relation to sulfur amino acid metabolism in neonates. Am. J. Clin. Nutr. 2000, 72, 751-757. [PubMed]
- Donnino, M.W.; Carney, E.; Cocchi, M.N.; Barbash, I.; Chase, M.; Joyce, N.; Chou, P.P.; Ngo, L. Thiamine deficiency in critically ill patients with sepsis. J. Crit. Care 2010, 25, 576-581. [CrossRef] [PubMed]
- Manzanares, W.; Hardy, G. Thiamine supplementation in the critically ill. Curr Opin Clin Nutr. Metab. Care 2011,14, 610. [CrossRef] [PubMed]
- Frank, L.L. Thiamin in Clinical Practice. JPEN. J. Parenter. Enteral Nutr. 2015,39,503-520. [CrossRef] [PubMed]
- Peixoto de Lima, L.F.; Leite, H.P.; de AC Taddei, J.A. Low blood thiamine concentrations in children upon admission to the intensive care unit: Risk factors and prognostic significance. Am. J. Clin. Nutr. 2011, 93, 57-61. [CrossRef] [PubMed]
- Seear, M.; Lockitch, G.; Jacobson, B.; Quigley, G.; MacNab, A. Thiamine, riboflavin, and pyridoxine deficiencies in a population of critically ill children. J. Pediatr. 1992,121, 533-538. [CrossRef]
- Quasim, T.; McMillan, D.C.; Talwar, D.; Vasilaki, A.; O'Reilly, D.S.J.; Kinsella, J. The relationship between plasma and red cell B-vitamin concentrations in critically-ill patients. Clin. Nutr. 2005,24, 956-960. [CrossRef] [PubMed]
- Bjnrke Monsen, A.L.; Ueland, P.M. Homocysteine and methylmalonic acid in diagnosis and risk assessment from infancy to adolescence. Am. J. Clin. Nutr. 2003, 78, 7-21. [PubMed]
- Sauberlich, H.E. Newer laboratory methods for assessing nutriture of selected B-complex vitamins. Annu. Rev. Nutr. 1984, 4, 377-407. [CrossRef] [PubMed]
- Takahashi, K.; Fukuwatari, T.; Shibata, K. Fluorometric determination of pantothenic acid in human urine by isocratic reversed-phase ion-pair high-performance liquid chromatography with post-column derivatization. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877,2168-2172. [CrossRef] [PubMed]
- Bjnrke Monsen, A.L.; Ueland, P.M.; Vollset, S.E.; Guttormsen, A.B.; Markestad, T.; Solheim, E.; Refsum, H. Determinants of cobalamin status in newborns. Pediatrics 2001,108, 624-630. [CrossRef] [PubMed]
- Vasilaki, A.T.; McMillan, D.C.; Kinsella, J.; Duncan, A.; O'Reilly, D.S.J.; Talwar, D. Relation between riboflavin, flavin mononucleotide and flavin adenine dinucleotide concentrations in plasma and red cells in patients with critical illness. Clin. Chim. Acta 2010, 411,1750-1755. [CrossRef] [PubMed]
- Talwar, D.; Quasim, T.; McMillan, D.C.; Kinsella, J.; Williamson, C.; O'Reilly, D.S.J. Pyridoxal phosphate decreases in plasma but not erythrocytes during systemic inflammatory response. Clin. Chem. 2003, 49, 515-518. [CrossRef] [PubMed]
- Pepper, M.R.; Black, M.M. B12 in fetal development. Semin. Cell Dev. Biol. 2011, 22, 619-623. [CrossRef] [PubMed]
- Manios, Y.; Moschonis, G.; Dekkers, R.; Mavrogianni, C.; Grammatikaki, E.; van den Heuvel, E. Vitamin B2, vitamin B12 and total homocysteine status in children and their associations with dietary intake of B-vitamins from different food groups: the Healthy Growth Study. Eur. J. Nutr. 2017, 56, 321-331. [CrossRef] [PubMed]
- Fanjiang, G.; Kleinman, R.E. Nutrition and performance in children. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 342-347. [CrossRef] [PubMed]
- dos Reis Santos, M.; Leite, H.P.; Luiz Pereira, A.M.; Dell'Acqua Cassao, B.; de Oliveira Iglesias, S.B. Factors associated with not meeting the recommendations for micronutrient intake in critically ill children. Nutrition 2016, 32,1217-1222. [CrossRef] [PubMed]
- Paul, L.; Ueland, P.M.; Selhub, J. Mechanistic perspective on the relationship between pyridoxal 5'-phosphate and inflammation. Nutr. Rev. 2013, 71, 239-244. [CrossRef] [PubMed]
- Ulvik, A.; Midttun, 0.; Pedersen, E.R.; Eussen, S.J.; Nygard, O.; Ueland, P.M. Evidence for increased catabolism of vitamin B-6 during systemic inflammation. Am. J. Clin. Nutr. 2014,100, 250-255. [CrossRef] [PubMed]
- Cheng, C.-H.; Chang, S.-J.; Lee, B.-J.; Lin, K.-L.; Huang, Y.-C. Vitamin B6 supplementation increases immune responses in critically ill patients. Eur. J. Clin. Nutr. 2006, 60,1207-1213. [CrossRef] [PubMed]
- Corcoran, T.B.; O'Neill, M.P.; Webb, S.A.R.; Ho, K.M. Inflammation, vitamin deficiencies and organ failure in critically ill patients. Anaesth. Intensive Care 2009, 37, 740-747. [PubMed]
- Sviri, S.; Khalaila, R.; Daher, S.; Bayya, A.; Linton, D.M.; Stav, I.; van Heerden, P.V. Increased Vitamin B12 levels are associated with mortality in critically ill medical patients. Clin. Nutr. 2012, 31, 53-59. [CrossRef] [PubMed]
- McGregor, G.P.; Biesalski, H.K. Rationale and impact of vitamin C in clinical nutrition. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 697-703. [CrossRef] [PubMed]
- Oudemans-van Straaten, H.M.; Spoelstra-de Man, A.M.; de Waard, M.C. Vitamin C revisited. Crit. Care 2014, 18, 460. [CrossRef] [PubMed]
- Berger, M. M. Vitamin C Requirements in Parenteral Nutrition. Gastroenterology 2009,137, S70-S78. [CrossRef] [PubMed]
- Berger, M.M.; Oudemans-van Straaten, H.M. Vitamin C supplementation in the critically ill patient. Curr. Opin. Clin. Nutr. Metab. Care 2015,18,193-201. [CrossRef] [PubMed]
- Grosso, G.; Bei, R.; Mistretta, A.; Marventano, S.; Calabrese, G.; Masuelli, L.; Giganti, G.; Modesti, A.; Galvano, F.; Gazzolo, D. Effects of Vitamin C on health: A review of evidence. Front. Biosci. 2013,1017-1029. [CrossRef]
- Fukushima, R.; Yamazaki, E. Vitamin C requirement in surgical patients. Curr. Opin. Clin. Nutr. Metab. Care 2010,13, 669-676. [CrossRef] [PubMed]
- Agarwal, A.; Shaharyar, A.; Kumar, A.; Bhat, M.S.; Mishra, M. Scurvy in pediatric age group—A disease often forgotten? J. Clin. Orthop. Trauma 2015, 6,101-107. [CrossRef] [PubMed]
- Duerbeck, N.B.; Dowling, D.D.; Duerbeck, J.M. Vitamin C: Promises Not Kept. Obstet. Gynecol. Surv. 2016, 71,187-193. [CrossRef]
- Karlsen, A.; Blomhoff, R.; Gundersen, T.E. High-throughput analysis of Vitamin C in human plasma with the use of HPLC with monolithic column and UV-detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 824,132-138. [CrossRef] [PubMed]
- Long, C.L.; Maull, K.I.; Krishnan, R.S.; Laws, H.L.; Geiger, J.W.; Borghesi, L.; Franks, W.; Lawson, T.C.; Sauberlich, H.E. Ascorbic acid dynamics in the seriously ill and injured. J. Surg. Res. 2003, 109, 144-148. [CrossRef]
- Greaves, R. Vitamin A—Serum Vitamin A Analysis. In Vitamin A and Carotenoids: Chemistry, Analysis, Function and Effects; Preedy, V.R., Ed.; The Royal Society of Chemistry: Cambridge, UK, 2012; pp. 162-183.
- Prelack, K.; Sheridan, R.L. Micronutrient supplementation in the critically ill patient: Strategies for clinical practice. J. Trauma 2001, 51, 601-620. [CrossRef] [PubMed]
- Barber, T.; Esteban-Pretel, G.; Marin, M.P.; Timoneda, J. Vitamin A Deficiency: An Overview. In Vitamin A and Carotenoids: Chemistry, Analysis, Function and Effects; Preedy, V.R., Ed.; The Royal Society of Chemistry: Cambridge, UK, 2012; pp. 396-416.
- Darlow, B.A.; Graham, P.J.; Rojas-Reyes, M.X. Vitamin A supplementation to prevent mortality and short- and long-term morbidity in very low birth weight infants. Cochrane Database Syst. Rev. 2016. [CrossRef]
- Mactier, H.; Weaver, L.T. Vitamin A and preterm infants: What we know, what we don't know, and what we need to know. Arch. Dis. Child. Fetal Neonatal Ed. 2005, 90, F103-F108. [CrossRef] [PubMed]
- Shenai, J.P.; Chytil, F.; Jhaveri, A.; Stahlman, M.T. Plasma vitamin A and retinol-binding protein in premature and term neonates. J. Pediatr. 1981, 99, 302-305. [CrossRef]
- Shenai, J.P.; Rush, M.G.; Stahlman, M.T.; Chytil, F. Plasma retinol-binding protein response to vitamin A administration in infants susceptible to bronchopulmonary dysplasia. J. Pediatr. 1990,116,607-614. [CrossRef]
- Zachman, R.D.; Samuels, D.P.; Brand, J.M.; Winston, J.F.; Pi, J.T. Use of the intramuscular relative-dose-response test to predict bronchopulmonary dysplasia in premature infants. Am. J. Clin. Nutr. 1996, 63,123-129. [PubMed]
- Tanumihardjo, S.A.; Russell, R.M.; Stephensen, C.B.; Gannon, B.M.; Craft, N.E.; Haskell, M.J.; Lietz, G.; Schulze, K.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)—Vitamin A Review. J. Nutr. 2016,146,1816S-1848S. [CrossRef] [PubMed]
- Stephensen, C.B.; Gildengorin, G. Serum retinol, the acute phase response, and the apparent misclassification of vitamin A status in the third National Health and Nutrition Examination Survey. Am. J. Clin. Nutr. 2000, 72,1170-1178. [PubMed]
- Duncan, A.; Talwar, D.; McMillan, D.C.; Stefanowicz, F.; O'Reilly, D.S.J. Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements. Am. J. Clin. Nutr. 2012, 95, 64-71. [CrossRef] [PubMed]
- Gray, A.; McMillan, D.C.; Wilson, C.; Williamson, C.; O'Reilly, D.S.J.; Talwar, D. The relationship between the acute changes in the systemic inflammatory response, lipid soluble antioxidant vitamins and lipid peroxidation following elective knee arthroplasty. Clin. Nutr. 2005, 24, 746-750. [CrossRef] [PubMed]
- Conway, F.J.S.; Talwar, D.; McMillan, D.C. The relationship between acute changes in the systemic inflammatory response and plasma ascorbic acid, alpha-tocopherol and lipid peroxidation after elective hip arthroplasty. Clin. Nutr. 2015, 34, 642-646. [CrossRef] [PubMed]
- Mitra, A.K.; Alvarez, J.O.; Stephensen, C.B. Increased urinary retinol loss in children with severe infections. Lancet 1998, 351,1033-1034. [CrossRef]
- Stephensen, C.B.; Alvarez, J.O.; Kohatsu, J.; Hardmeier, R.; Kennedy, J.I.; Gammon, R.B. Vitamin A is excreted in the urine during acute infection. Am. J. Clin. Nutr. 1994, 60, 388-392. [PubMed]
- Darlow, B.; Graham, P. Vitamin A supplementation for preventing morbidity and mortality in very low birthweight infants. In Cochrane Database of Systematic Reviews; Darlow, B., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2002.
- Mahalanabis, D.; Lahiri, M.; Paul, D.; Gupta, S.; Gupta, A.; Wahed, M.A.; Khaled, M.A. Randomized, double-blind, placebo-controlled clinical trial of the efficacy of treatment with zinc or vitamin A in infants and young children with severe acute lower respiratory infection. Am. J. Clin. Nutr. 2004, 79, 430-436. [PubMed]
- Hussey, G.D.; Klein, M. A Randomized, Controlled Trial of Vitamin A in Children with Severe Measles. N. Engl. J. Med. 1990, 323,160-164. [CrossRef] [PubMed]
- Deluca, H.F. Historical overview of vitamin D. In Vitamin D, 3rd ed.; Feldman, D., Pike, J.W., Adams, J.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 3-12.
- Blunt, J.W.; Deluca, H.F.; Schnoes, K. 25-Hydroxycholecalciferol. A Biologically Active Metabolite of Vitamin D3. Biochemistry 1968, 7, 3317-3322. [CrossRef] [PubMed]
- Brommage, R.; Deluca, H.F. Evidence That 1,25-Dihydroxyvitamin D3 Is the Physiologically Active Metabolite of Vitamin D3. Endocr. Rev. 1985, 6, 491-511. [CrossRef] [PubMed]
- Principi, N.; Bianchini, S.; Baggi, E.; Esposito, S. Implications of maternal vitamin D deficiency for the fetus, the neonate and the young infant. Eur. J. Nutr. 2013, 52, 859-867. [CrossRef] [PubMed]
- Zipitis, C.S.; Akobeng, A.K. Vitamin D supplementation in early childhood and risk of type 1 diabetes: A systematic review and meta-analysis. Arch. Dis. Child. 2008, 93, 512-517. [CrossRef] [PubMed]
- Wagner, C.L.; Greer, F.R. Prevention of Rickets and Vitamin D Deficiency in Infants, Children, and Adolescents and the Section on Breastfeeding and Committee on Nutrition. Pediatrics 2008,122,1142-1152. [CrossRef] [PubMed]
- Bouillon, R. The vitamin D binding protein DBP. In Vitamin D, 3rd ed.; Feldman, D., Pike, J.W., Adams, J.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 57-72.
- Zella, L.A.; Shevde, N.K.; Hollis, B.W.; Cooke, N.E.; Pike, J.W. Vitamin D-binding protein influences total circulating levels of 1,25-dihydroxyvitamin D3 but does not directly modulate the bioactive levels of the hormone in vivo. Endocrinology 2008,149, 3656-3667. [CrossRef] [PubMed]
- Chun, R.F.; Peercy, B.E.; Orwoll, E.S.; Nielson, C.M.; Adams, J.S.; Hewison, M. Vitamin D and DBP: The free hormone hypothesis revisited. J. Steroid Biochem. Mol. Biol. 2014,144,132-137. [CrossRef] [PubMed]
- Carter, G.D.; Phinney, K.W. Assessing Vitamin D Status: Time for a Rethink? Clin. Chem. 2014, 60, 809-811. [CrossRef] [PubMed]
- Madden, K.; Feldman, H.A.; Chun, R.F.; Smith, E.M.; Sullivan, R.M.; Agan, A.A.; Keisling, S.M.; Panoskaltsis-Mortari, A.; Randolph, A.G. Critically Ill Children Have Low Vitamin D-Binding Protein, Influencing Bioavailability of Vitamin D. Ann. Am. Thorac. Soc. 2015,12,1654-1661. [CrossRef] [PubMed]
- Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Calcium and Vitamin D; Del Valle, H., Yaktine, A., Taylor, C., Ross, A., Eds.; National Academies Press: Washington, DC, USA, 2011.
- Kovacs, C.S. Vitamin D in pregnancy and lactation: Maternal, fetal, and neonatal outcomes from human and animal studies. Am. J. Clin. Nutr. 2008, 88, 520S-528S. [PubMed]
- Kovacs, C.S.; Kronenberg, H.M. Maternal-Fetal Calcium and Bone Metabolism During Pregnancy, Puerperium, and Lactation. Endocr. Rev. 1997,18, 832-872. [CrossRef] [PubMed]
- Steichen, J.J.; Tsang, R.C.; Gratton, T.L.; Hamstra, A.; DeLuca, H.F. Vitamin D Homeostasis in the Perinatal Period. N. Engl. J. Med. 1980, 302, 315-319. [CrossRef] [PubMed]
- McNally, J.D.; Menon, K.; Chakraborty, P.; Fisher, L.; Williams, K.A.; Al-Dirbashi, O.Y.; Doherty, D.R. Canadian Critical Care Trials Group The Association of Vitamin D Status With Pediatric Critical Illness. Pediatrics 2012,130, 429-436. [CrossRef] [PubMed]
- Mehta, N.M.; Duggan, C.P. Nutritional Deficiencies During Critical Illness. Pediatr. Clin. N. Am. 2009, 56, 1143-1160. [CrossRef] [PubMed]
- Reid, D.; Toole, B.J.; Knox, S.; Talwar, D.; Harten, J.; O'Reilly, D.S.J.; Blackwell, S.; Kinsella, J.; McMillan, D.C.; Wallace, A.M. The relation between acute changes in the systemic inflammatory response and plasma 25-hydroxyvitamin D concentrations after elective knee arthroplasty. Am. J. Clin. Nutr. 2011, 93,1006-1011. [CrossRef] [PubMed]
- Madden, K.; Feldman, H.A.; Smith, E.M.; Gordon, C.M.; Keisling, S.M.; Sullivan, R.M.; Hollis, B.W.; Agan, A.A.; Randolph, A.G. Vitamin D Deficiency in Critically Ill Children. Pediatrics 2012,130, 421-428. [CrossRef] [PubMed]
- Rippel, C.; South, M.; Butt, W.W.; Shekerdemian, L.S. Vitamin D status in critically ill children. Intensive Care Med. 2012, 38, 2055-2062. [CrossRef] [PubMed]
- Rey, C.; Sanchez-Arango, D.; Lopez-Herce, J.; Martinez-Camblor, P.; Garda-Hernandez, I.; Prieto, B.; Pallavicini, Z. Vitamin D deficiency at pediatric intensive care admission. J. Pediatr. 2014, 90, 135-142. [CrossRef] [PubMed]
- Ayulo, M.; Katyal, C.; Agarwal, C.; Sweberg, T.; Rastogi, D.; Markowitz, M.; Ushay, H.M. The prevalence of vitamin D deficiency and its relationship with disease severity in an urban pediatric critical care unit. Endocr. Regul. 2014, 48, 69-76. [PubMed]
- Ebenezer, K.; Job, V.; Antonisamy, B.; Dawodu, A.; Manivachagan, M.N.; Steinhoff, M. Serum Vitamin D Status and Outcome among Critically Ill Children Admitted to the Pediatric Intensive Care Unit in South India. Indian J. Pediatr. 2016, 83,120-125. [CrossRef] [PubMed]
- Rebouche, C.J.; Panagides, D.D.; Nelson, S.E. Role of carnitine in utilization of dietary medium-chain triglycerides by term infants. Am. J. Clin. Nutr. 1990, 52, 820-824. [PubMed]
- Ponnarmeni, S.; Kumar Angurana, S.; Singhi, S.; Bansal, A.; Dayal, D.; Kaur, R.; Patial, A.; Verma Attri, S. Vitamin D deficiency in critically ill children with sepsis. Paediatr. Int. Child Health 2016, 36,15-21. [CrossRef] [PubMed]
- Gottschlich, M.M.; Mayes, T.; Khoury, J.; Warden, G.D. Hypovitaminosis D in acutely injured pediatric burn patients. J. Am. Diet. Assoc. 2004,104, 931-941. [CrossRef] [PubMed]
- Krishnan, A.; Ochola, J.; Mundy, J.; Jones, M.; Kruger, P.; Duncan, E.; Venkatesh, B. Acute fluid shifts influence the assessment of serum vitamin D status in critically ill patients. Crit. Care 2010, 14, R216. [CrossRef] [PubMed]
- Ghashut, R.A.; Talwar, D.; Kinsella, J.; Duncan, A.; McMillan, D.C. The effect of the systemic inflammatory response on plasma vitamin 25 (OH) D concentrations adjusted for albumin. PLoS ONE 2014, 9, e92614. [CrossRef] [PubMed]
- Chow, C.K. Vitamin E and oxidative stress. Free Radic. Biol. Med. 1991,11, 215-232. [CrossRef]
- Pope, S.A.; Clayton, P.T.; Muller, D.P. A new method for the analysis of urinary vitamin E metabolites and the tentative identification of a novel group of compounds. Arch. Biochem. Biophys. 2000, 381, 8-15. [CrossRef] [PubMed]
- Luo, M.; Fernandez-Estivariz, C.; Jones, D.P.; Accardi, C.R.; Alteheld, B.; Bazargan, N.; Hao, L.; Griffith, D.P.; Blumberg, J.B.; Galloway, J.R.; et al. Depletion of plasma antioxidants in surgical intensive care unit patients requiring parenteral feeding: Effects of parenteral nutrition with or without alanyl-glutamine dipeptide supplementation. Nutrition 2008,24, 37-44. [CrossRef] [PubMed]
- Nathens, A.B.; Neff, M.J.; Jurkovich, G.J.; Klotz, P.; Farver, K.; Ruzinski, J.T.; Radella, F.; Garcia, I.; Maier, R. V Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann. Surg. 2002, 236, 814-822. [CrossRef] [PubMed]
- Koekkoek, W.A.C.K.; van Zanten, A.R.H. Antioxidant vitamins and trace elements in critical illness. Nutr. Clin. Pract. 2016, 31, 457-474. [CrossRef] [PubMed]
- Hacquebard, M.; Carpentier, Y.A. Vitamin E: Absorption, plasma transport and cell uptake. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8,133-138. [CrossRef] [PubMed]
- Iuliano, L.; Micheletta, F.; Natoli, S.; Ginanni Corradini, S.; Iappelli, M.; Elisei, W.; Giovannelli, L.; Violi, F.; Diczfalusy, U. Measurement of oxysterols and a-tocopherol in plasma and tissue samples as indices of oxidant stress status. Anal. Biochem. 2003, 312, 217-223. [CrossRef]
- Ford, L.; Farr, J.; Morris, P.; Berg, J. The value of measuring serum cholesterol-adjusted vitamin E in routine practice. Ann. Clin. Biochem. 2006, 43,130-134. [CrossRef] [PubMed]
- Doise, J.M.; Aho, L.S.; Quenot, J.P.; Guilland, J.C.; Zeller, M.; Vergely, C.; Aube, H.; Blettery, B.; Rochette, L. Plasma antioxidant status in septic critically ill patients: A decrease over time. Fundam. Clin. Pharmacol. 2008, 22, 203-209. [CrossRef] [PubMed]
- Mishra, V.; Baines, M.; Wenstone, R.; Shenkin, A. Markers of oxidative damage, antioxidant status and clinical outcome in critically ill patients. Ann. Clin. Biochem. 2005, 42, 269-276. [CrossRef] [PubMed]
- Bocca, B.; Ciccarelli, S.; Agostino, R.; Alimonti, A. Trace elements, oxidative status and antioxidant capacity as biomarkers in very low birth weight infants. Environ. Res. 2017,156, 705-713. [CrossRef] [PubMed]
- Oldenburg, J.; Marinova, M.; Muller-Reible, C.; Watzka, M. The Vitamin K Cycle. 2008, 78, 35-62. [CrossRef]
- Bolton-Smith, C.; Price, R.J.; Fenton, S.T.; Harrington, D.J.; Shearer, M.J. Compilation of a provisional UK database for the phylloquinone (vitamin K1) content of foods. Br. J. Nutr. 2000, 83, 389-399. [PubMed]
- Tsugawa, N.; Shiraki, M.; Suhara, Y.; Kamao, M.; Tanaka, K.; Okano, T. Vitamin K status of healthy Japanese women: age-related vitamin K requirement for gamma-carboxylation of osteocalcin. Am. J. Clin. Nutr. 2006, 83, 380-386. [PubMed]
- Sato, T.; Schurgers, L.J.; Uenishi, K. Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. Nutr. J. 2012,11, 93. [CrossRef] [PubMed]
- Suttie, J.W. The importance of menaquinones in human nutrition. Annu. Rev. Nutr. 1995, 15, 399-417. [CrossRef] [PubMed]
- Shearer, M.J.; Newman, P. Metabolism and cell biology of vitamin K. Thromb. Haemost. 2008, 530-547. [CrossRef]
- Clarke, P.; Mitchell, S.J.; Shearer, M.J. Total and differential phylloquinone (Vitamin K1) intakes of preterm infants from all sources during the neonatal period. Nutrients 2015, 7, 8308-8320. [CrossRef] [PubMed]
- Burke, C.W. Vitamin K Deficiency Bleeding: Overview and Considerations. J. Pediatr. Heal. Care 2013, 27, 215-221. [CrossRef] [PubMed]
- Clarke, P.; Shearer, M.J. Vitamin K deficiency bleeding: the readiness is all. Arch. Dis. Child. 2007, 92, 741-743. [CrossRef] [PubMed]
- Andrew, M. The relevance of developmental hemostasis to hemorrhagic disorders of newborns. Semin. Perinatol. 1997, 21, 70-85. [CrossRef]
- Andrew, M.; Paes, B.; Milner, R.; Johnston, M.; Mitchell, L.; Tollefsen, D.M.; Castle, V.; Powers, P. Development of the human coagulation system in the healthy premature infant. Blood 1988, 72,1651-1657. [PubMed]
- Thane, C.W.; Wang, L.Y.; Coward, W.A. Plasma phylloquinone (vitamin K1) concentration and its relationship to intake in British adults aged 19-64 years. Br. J. Nutr. 2006, 96,1116. [CrossRef] [PubMed]
- McKeown, N.M.; Jacques, P.F.; Gundberg, C.M.; Peterson, J.W.; Tucker, K.L.; Kiel, D.P.; Wilson, P.W.F.; Booth, S.L. Dietary and nondietary determinants of vitamin K biochemical measures in men and women. J. Nutr. 2002,132,1329-1334. [PubMed]
- Sokoll, L.J.; Sadowski, J.A. Comparison of biochemical indexes for assessing vitamin K nutritional status in a healthy adult population. Am. J. Clin. Nutr. 1996, 63, 566-573. [PubMed]
- Azharuddin, M.K.; O'Reilly, D.S.J.; Gray, A.; Talwar, D. HPLC method for plasma vitamin K1: Effect of plasma triglyceride and acute-phase response on circulating concentrations. Clin. Chem. 2007, 53,1706-1713. [CrossRef] [PubMed]
- von Kries, R.; Greer, F.R.; Suttie, J.W. Assessment of vitamin K status of the newborn infant. J. Pediatr. Gastroenterol. Nutr. 1993,16, 231-238. [CrossRef] [PubMed]
- Greer, F.R.; Marshall, S.; Cherry, J.; Suttie, J.W. Vitamin K status of lactating mothers, human milk, and breast-feeding infants. Pediatrics 1991, 88, 751-756. [PubMed]
- Greer, F.R.; Marshall, S.P.; Severson, R.R.; Smith, D.A.; Shearer, M.J.; Pace, D.G.; Joubert, P.H. A new mixed micellar preparation for oral vitamin K prophylaxis: Randomised controlled comparison with an intramuscular formulation in breast fed infants. Arch. Dis. Child. 1998, 79, 300-305. [CrossRef] [PubMed]
- Widdershoven, J.; Lambert, W.; Motohara, K.; Monnens, L.; de Leenheer, A.; Matsuda, I.; Endo, F. Plasma concentrations of vitamin K1 and PIVKA-II in bottle-fed and breast-fed infants with and without vitamin K prophylaxis at birth. Eur. J. Pediatr. 1988,148,139-142. [CrossRef] [PubMed]
- Cornelissen, E.A.; Kollee, L.A.; De Abreu, R.A.; van Baal, J.M.; Motohara, K.; Verbruggen, B.; Monnens, L.A. Effects of oral and intramuscular vitamin K prophylaxis on vitamin K1, PIVKA-II, and clotting factors in breast fed infants. Arch. Dis. Child. 1992, 67,1250-1254. [CrossRef] [PubMed]
- Cornelissen, E.A.; Kollee, L.A.; De Abreu, R.A.; Motohara, K.; Monnens, L.A. Prevention of vitamin K deficiency in infancy by weekly administration of vitamin K. Acta Paediatr. 1993, 82, 656-659. [CrossRef] [PubMed]
- Cornelissen, E.A.; Kollee, L.A.; van Lith, T.G.; Motohara, K.; Monnens, L.A. Evaluation of a daily dose of 25 micrograms vitamin K1 to prevent vitamin K deficiency in breast-fed infants. J. Pediatr. Gastroenterol. Nutr. 1993,16, 301-305. [CrossRef] [PubMed]
- Witt, M.; Kvist, N.; Jorgensen, M.H.; Hulscher, J.B.F.; Verkade, H.J. Netherlands Study group of Biliary Atresia Registry (NeSBAR) Prophylactic Dosing of Vitamin K to Prevent Bleeding. Pediatrics 2016, 137, e20154222. [CrossRef] [PubMed]
- Shearer, M.J.; Bechtold, H.; Andrassy, K.; Koderisch, J.; McCarthy, P.T.; Trenk, D.; Jahnchen, E.; Ritz, E. Mechanism of cephalosporin-induced hypoprothrombinemia: Relation to cephalosporin side chain, vitamin K metabolism, and vitamin K status. J. Clin. Pharmacol. 1988, 28, 88-95. [CrossRef] [PubMed]
- Bhat, R.V.; Deshmukh, C.T. A study of Vitamin K status in children on prolonged antibiotic therapy. Indian Pediatr. 2003, 40, 36-40. [PubMed]
- Aziz, F.; Patil, P. Role of Prophylactic Vitamin K in Preventing Antibiotic Induced Hypoprothrombinemia. Indian J. Pediatr. 2015, 82, 363-367. [CrossRef] [PubMed]
- Costakos, D.T.; Greer, F.R.; Love, L.A.; Dahlen, L.R.; Suttie, J.W. Vitamin K prophylaxis for premature infants: 1 mg versus 0.5 mg. Am. J. Perinatol. 2003,20, 485-490. [CrossRef] [PubMed]
- Raith, W.; Fauler, G.; Pichler, G.; Muntean, W. Plasma concentrations after intravenous administration of phylloquinone (vitamin K(1)) in preterm and sick neonates. Thromb. Res. 2000, 99, 467-472. [CrossRef]
- Pietersma-de Bruyn, A.L.; van der Straaten, P.J.; van Haard, P.M.; Kuijpers, J.C.; Hamulyak, K.; Ruys, J.H. Vitamin K1 levels and K1-dependent coagulation factors II and X in preterm and small-for-date neonates. Eur. J. Pediatr. 1990,149, 640-644. [CrossRef] [PubMed]
- Clarke, P.; Mitchell, S.J.; Wynn, R.; Sundaram, S.; Speed, V.; Gardener, E.; Roeves, D.; Shearer, M.J. Vitamin K Prophylaxis for Preterm Infants: A Randomized, Controlled Trial of 3 Regimens. Pediatrics 2006, 118, e1657-e1666. [CrossRef] [PubMed]
- Sann, L.; Leclercq, M.; Guillaumont, M.; Trouyez, R.; Bethenod, M.; Bourgeay-Causse, M. Serum vitamin K1 concentrations after oral administration of vitamin K1 in low birth weight infants. J. Pediatr. 1985, 107, 608-611. [CrossRef]
- Kumar, D.; Greer, F.R.; Super, D.M.; Suttie, J.W.; Moore, J.J. Vitamin K status of premature infants: implications for current recommendations. Pediatrics 2001,108,1117-1122. [CrossRef] [PubMed]
- Hesse, L.; Eberl, W.; Schlaud, M.; Poets, C.F. Blood transfusion. Iron load and retinopathy of prematurity. Eur. J. Pediatr. 1997,156, 465-470. [CrossRef] [PubMed]
- Mohamed, A.; Shah, P.S. Transfusion associated necrotizing enterocolitis: a meta-analysis of observational data. Pediatrics 2012,129, 529-540. [CrossRef] [PubMed]
- Beard, J. Recent evidence from human and animal studies regarding iron status and infant development. J. Nutr. 2007, 137, 524S-530S. [PubMed]
- Shouman, B.O.; Mesbah, A.; Aly, H. Iron metabolism and lipid peroxidation products in infants with hypoxic ischemic encephalopathy. J. Perinatol. 2008, 28, 487-491. [CrossRef] [PubMed]
- Kaur, C.; Ling, E.A. Periventricular white matter damage in the hypoxic neonatal brain: Role of microglial cells. Prog. Neurobiol. 2009, 87, 264-280. [CrossRef] [PubMed]
- Rao, R.; Georgieff, M.K. Perinatal aspects of iron metabolism. Acta Paediatr. Suppl. 2002, 91, 124-129. [CrossRef] [PubMed]
- Shaw, J.C. Iron absorption by the premature infant. The effect of transfusion and iron supplements on the serum ferritin levels. Acta Paediatr. Scand. Suppl. 1982, 299, 83-89. [CrossRef] [PubMed]
- Chang, L.L. Storage iron in foetal livers. Acta Paediatr. Scand. 1973, 62,173-175. [CrossRef] [PubMed]
- Sullivan, J.L. Iron, plasma antioxidants, and the “oxygen radical disease of prematurity". Am. J. Dis. Child. 1988,142,1341-1344. [CrossRef] [PubMed]
- Siimes, M.A.; Addiego, J.E.; Dallman, P.R. Ferritin in serum: D iagnosis of iron deficiency and iron overload in infants and children. Blood 1974, 43, 581-590. [PubMed]
- Lasocki, S.; Longrois, D.; Montravers, P.; Beaumont, C. Hepcidin and Anemia of the Critically Ill Patient. Anesthesiology 2011,114, 688-694. [CrossRef] [PubMed]
- Labbe, R.F.; Vreman, H.J.; Stevenson, D.K. Zinc protoporphyrin: A metabolite with a mission. Clin. Chem. 1999, 45, 2060-2072. [PubMed]
- Milman, N.; Ibsen, K.K.; Christensen, J.M. Serum ferritin and iron status in mothers and newborn infants. Acta Obstet. Gynecol. Scand. 1987, 66,205-211. [CrossRef] [PubMed]
- Juul, S.E.; Zerzan, J.C.; Strandjord, T.P.; Woodrum, D.E. Zinc protoporphyrin/heme as an indicator of iron status in NICU patients. J. Pediatr. 2003,142, 273-278. [CrossRef] [PubMed]
- Miller, S.M.; McPherson, R.J.; Juul, S.E. Iron sulfate supplementation decreases zinc protoporphyrin to heme ratio in premature infants. J. Pediatr. 2006,148, 44-48. [CrossRef] [PubMed]
- Weinberg, E.D. Iron withholding: A defense against infection and neoplasia. Physiol. Rev. 1984, 64, 65-102. [PubMed]
- Marx, J.J.M. Iron and infection: competition between host and microbes for a precious element. Best Pract. Res. Clin. Haematol. 2002,15,411-426. [CrossRef] [PubMed]
- Hentze, M.W.; Muckenthaler, M.U.; Galy, B.; Camaschella, C. Two to Tango: Regulation of Mammalian Iron Metabolism. Cell 2010,142, 24-38. [CrossRef] [PubMed]
- Wang, G.; Wang, D.; Jiang, X.; Yu, X.; Ma, L.; Zhong, J.; Feng, X. Blood Zinc, Iron, and Copper Levels in Critically Ill Neonates. Biol. Trace Elem. Res. 2015,164, 8-11. [CrossRef] [PubMed]
- Wang, G.; Feng, X.; Yu, X.; Xu, X.; Wang, D.; Yang, H.; Shi, X. Prognostic Value of Blood Zinc, Iron, and Copper Levels in Critically Ill Children with Pediatric Risk of Mortality Score III. Biol. Trace Elem. Res. 2013, 152, 300-304. [CrossRef] [PubMed]
- Secher, E.L.; Stensballe, J.; Afshari, A. Transfusion in critically ill children: An ongoing dilemma. Acta Anaesthesiol. Scand. 2013, 57,684-691. [CrossRef] [PubMed]
- Bateman, S.T.; Lacroix, J.; Boven, K.; Forbes, P.; Barton, R.; Thomas, N.J.; Jacobs, B.; Markovitz, B.; Goldstein, B.; Hanson, J.H.; Li, H.A.; Randolph, A.G. Pediatric Acute Lung Injury and Sepsis Investigators Network Anemia, blood loss, and blood transfusions in North American children in the intensive care unit. Am. J. Respir. Crit. Care Med. 2008,178, 26-33. [CrossRef] [PubMed]
- Stark, M.J.; Keir, A.K.; Andersen, C.C. Does non-transferrin bound iron contribute to transfusion related immune-modulation in preterms? Arch. Dis. Child.-Fetal Neonatal Ed. 2013, 98, F424-F429. [CrossRef] [PubMed]
- Hirano, K.; Morinobu, T.; Kim, H.; Hiroi, M.; Ban, R.; Ogawa, S.; Ogihara, H.; Tamai, H.; Ogihara, T. Blood transfusion increases radical promoting non-transferrin bound iron in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2001, 84, F188-F193. [CrossRef] [PubMed]
- Cooke, R.W.; Drury, J.A.; Yoxall, C.W.; James, C. Blood transfusion and chronic lung disease in preterm infants. Eur. J. Pediatr. 1997,156, 47-50. [CrossRef] [PubMed]
- King, J.C. Zinc: an essential but elusive nutrient. Am. J. Clin. Nutr. 2011, 94, 679S-684S. [CrossRef] [PubMed]
- Prasad, A.S. Zinc in growth and development and spectrum of human zinc deficiency. J. Am. Coll. Nutr. 1988, 7, 377-384. [CrossRef] [PubMed]
- Baer, M.T.; King, J.C. Tissue zinc levels and zinc excretion during experimental zinc depletion in young men. Am. J. Clin. Nutr. 1984, 39, 556-570. [PubMed]
- King, J.C.; Shames, D.M.; Lowe, N.M.; Woodhouse, L.R.; Sutherland, B.; Abrams, S.A.; Turnlund, J.R.; Jackson, M.J. Effect of acute zinc depletion on zinc homeostasis and plasma zinc kinetics in men. Am. J. Clin. Nutr. 2001, 74,116-124. [PubMed]
- Heyland, D.K.; Jones, N.; Cvijanovich, N.Z.; Wong, H. Zinc supplementation in critically ill patients: A key pharmaconutrient? JPEN J. Parenter. Enter. Nutr. 2008, 32, 509-519. [CrossRef] [PubMed]
- Gibson, R.S.; Hess, S.Y.; Hotz, C.; Brown, K.H. Indicators of zinc status at the population level: A review of the evidence. Br. J. Nutr. 2008, 99. [CrossRef] [PubMed]
- Lowe, N.M.; Woodhouse, L.R.; Sutherland, B.; Shames, D.M.; Burri, B.J.; Abrams, S.A.; Turnlund, J.R.; Jackson, M.J.; King, J.C. Kinetic parameters and plasma zinc concentration correlate well with net loss and gain of zinc from men. J. Nutr. 2004,134, 2178-2181. [PubMed]
- Wessells, K.R.; Jorgensen, J.M.; Hess, S.Y.; Woodhouse, L.R.; Peerson, J.M.; Brown, K.H. Plasma zinc concentration responds rapidly to the initiation and discontinuation of short-term zinc supplementation in healthy men. J. Nutr. 2010,140, 2128-2133. [CrossRef] [PubMed]
- Eide, D.J. Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. Acta Mol. Cell Res. 2006, 1763, 711-722. [CrossRef] [PubMed]
- Bell, S.G.; Vallee, B.L. The Metallothionein/Thionein System: An Oxidoreductive Metabolic Zinc Link. Chem. Bio. Chem. 2009,10, 55-62. [CrossRef] [PubMed]
- Coyle, P.; Philcox, J.C.; Carey, L.C.; Rofe, A.M. Metallothionein: the multipurpose protein. Cell. Mol. Life Sci. 2002, 59, 627-647. [CrossRef] [PubMed]
- Prasad, A.S. Zinc deficiency in human subjects. Prog. Clin. Biol. Res. 1983,129,1-33. [PubMed]
- Sato, M.; Mehra, R.K.; Bremner, I. Measurement of plasma metallothionein-I in the assessment of the zinc status of zinc-deficient and stressed rats. J. Nutr. 1984,114,1683-1689. [PubMed]
- Liuzzi, J.P.; Lichten, L.A.; Rivera, S.; Blanchard, R.K.; Aydemir, T.B.; Knutson, M.D.; Ganz, T.; Cousins, R.J. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc. Natl. Acad. Sci. USA 2005,102, 6843-6848. [CrossRef] [PubMed]
- Uckan, D.; Cetin, M.; Dincer, N.; Kalkan, G.; Tuncer, M.; Tezcan, I. Serum zinc and alkaline phosphatase values in pediatric bone marrow transplantation patients. Pediatr. Hematol. Oncol. 2003, 20, 265-271. [CrossRef] [PubMed]
- Wong, H.R.; Shanley, T.P.; Sakthivel, B.; Cvijanovich, N.; Lin, R.; Allen, G.L.; Thomas, N.J.; Doctor, A.; Kalyanaraman, M.; Tofil, N.M.; et al. Genome-level expression profiles in pediatric septic shock indicate a role for altered zinc homeostasis in poor outcome. Physiol. Genomics 2007, 30,146-155. [CrossRef] [PubMed]
- Cvijanovich, N.Z.; King, J.C.; Flori, H.R.; Gildengorin, G.; Wong, H.R. Zinc homeostasis in pediatric critical illness. Pediatr. Crit. Care Med. 2009,10, 29-34. [CrossRef] [PubMed]
- Heidemann, S.M.; Holubkov, R.; Meert, K.L.; Dean, J.M.; Berger, J.; Bell, M.; Anand, K.J.S.; Zimmerman, J.; Newth, C.J.L.; Harrison, R.; Willson, D.F.; et al. Baseline serum concentrations of zinc, selenium, and prolactin in critically ill children. Pediatr. Crit. Care Med. 2013,14, e202-e206. [CrossRef] [PubMed]
- Manzoli, T.; Delgado, A.; Troster, E.; Carvalho, E.; Antunes, A.; Marques, D.; Zamberlan, P. Lymphocyte count as a sign of immunoparalysis and its correlation with nutritional status in pediatric intensive care patients with sepsis: A pilot study. Clinics 2016, 71, 644-649. [CrossRef]
- Oshiro, M.; Mimura, S.; Hayakawa, M.; Watanabe, K. Plasma and erythrocyte levels of trace elements and related antioxidant enzyme activities in low-birthweight infants during the early postnatal period. Acta Paediatr. 2001, 90,1283-1287. [CrossRef] [PubMed]
- Hatano, S.; Aihara, K.; Nishi, Y.; Usui, T. Trace elements (copper, zinc, manganese, and selenium) in plasma and erythrocytes in relation to dietary intake during infancy. J. Pediatr. Gastroenterol. Nutr. 1985, 4, 87-92. [CrossRef] [PubMed]
- Barbarot, S.; Chantier, E.; Kuster, A.; Hello, M.; Roze, J.-C.; Blouin, E.; Stalder, J.-F. Symptomatic acquired zinc deficiency in at-risk premature infants: High dose preventive supplementation is necessary. Pediatr. Dermatol. 2010, 27, 380-383. [CrossRef] [PubMed]
- Wulf, K.; Wilhelm, A.; Spielmann, M.; Wirth, S.; Jenke, A. Frequency of Symptomatic Zinc Deficiency in Very Low Birth Weight Infants. Klin. Padiatr. 2012, 225, 13-17. [CrossRef] [PubMed]
- Carcillo, J.A.; Michael Dean, J.; Holubkov, R.; Berger, J.; Meert, K.L.; Anand, K.J.S.; Zimmerman, J.; Newth, C.J.L.; Harrison, R.; Burr, J.; et al. The randomized comparative pediatric critical illness stress-induced immune suppression (CRISIS) prevention trial. Pediatr. Crit. Care Med. 2012,13,165-173. [CrossRef] [PubMed]
- Cvijanovich, N.Z.; King, J.C.; Flori, H.R.; Gildengorin, G.; Vinks, A.A.; Wong, H.R. Safety and Dose Escalation Study of Intravenous Zinc Supplementation in Pediatric Critical Illness. J. Parenter. Enter. Nutr. 2016, 40, 860-868. [CrossRef] [PubMed]
- Wadhwa, N.; Chandran, A.; Aneja, S.; Lodha, R.; Kabra, S.K.; Chaturvedi, M.K.; Sodhi, J.; Fitzwater, S.P.; Chandra, J.; Rath, B.; et al. Efficacy of zinc given as an adjunct in the treatment of severe and very severe pneumonia in hospitalized children 2-24 mo of age: A randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr. 2013, 97,1387-1394. [CrossRef] [PubMed]
- Valavi, E.; Hakimzadeh, M.; Shamsizadeh, A.; Aminzadeh, M.; Alghasi, A. The efficacy of zinc supplementation on outcome of children with severe pneumonia. A randomized double-blind placebo-controlled clinical trial. Indian J. Pediatr. 2011, 78,1079-1084. [CrossRef] [PubMed]
- Brooks, W.A.; Yunus, M.; Santosham, M.; Wahed, M.A.; Nahar, K.; Yeasmin, S.; Black, R.E. Zinc for severe pneumonia in very young children: double-blind placebo-controlled trial. Lancet 2004, 363, 1683-1688. [CrossRef]
- Ganguly, A.; Chakraborty, S.; Datta, K.; Hazra, A.; Datta, S.; Chakraborty, J. A Randomized Controlled Trial of Oral Zinc in Acute Pneumonia in Children Aged between 2 Months to 5 Years. Indian J. Pediatr. 2011, 78, 1085-1090. [CrossRef] [PubMed]
- Bose, A.; Coles, C.L.; Gunavathi; John, H.; Moses, P.; Raghupathy, P.; Kirubakaran, C.; Black, R.E.; Brooks, W.A.; Santosham, M. Efficacy of zinc in the treatment of severe pneumonia in hospitalized children. Am. J. Clin. Nutr. 2006, 83,1089-1096. [PubMed]
- Mathew, J.L. Zinc supplementation for prevention or treatment of childhood pneumonia: A systematic review of randomized controlled trials. Indian Pediatr. 2010, 47, 61-66. [CrossRef] [PubMed]
- Vincent, J.-L.; Forceville, X. Critically elucidating the role of selenium. Curr. Opin. Anaesthesiol. 2008, 21, 148-154. [CrossRef] [PubMed]
- Litov, R.E.; Combs, G.F. Selenium in pediatric nutrition. Pediatrics 1991, 87, 339-351. [PubMed]
- Forceville, X. The effect of selenium therapy on mortality in patients with sepsis syndrome: Simple selenium supplementation or real (5 H2O)-Na2SeO3 pharmacological effect? Crit. Care Med. 2013, 41, 1591-1592. [CrossRef] [PubMed]
- Levander, O.A. A global view of human selenium nutrition. Annu. Rev. Nutr. 1987, 7, 227-250. [CrossRef] [PubMed]
- Bayliss, P.A.; Buchanan, B.E.; Hancock, R.G.; Zlotkin, S.H. Tissue selenium accretion in premature and full-term human infants and children. Biol. Trace Elem. Res. 1985, 7, 55-61. [CrossRef] [PubMed]
- Daniels, L.; Gibson, R.; Simmer, K. Selenium status of preterm infants: the effect of postnatal age and method of feeding. Acta Paediatr. 1997, 86, 281-288. [CrossRef] [PubMed]
- Daniels, L.A.; Gibson, R.A.; Simmer, K. Glutathione peroxidase is not a functional marker of selenium status in the neonatal period. J. Pediatr. Gastroenterol. Nutr. 1998, 26, 263-268. [CrossRef] [PubMed]
- de Oliveira Iglesias, S.; Leite, H.; Paes, A.; de Oliveira, S.; Sami, R. Low plasma selenium concentrations in critically ill children: The interaction effect between inflammation and selenium deficiency. Crit. Care 2014, 18, R101. [CrossRef] [PubMed]
- Broman, M.; Lindfors, M.; Norberg, A.; Hebert, C.; Rooyackers, O.; Wernerman, J.; Flaring, U. Low serum selenium is associated with the severity of organ failure in critically ill children. Clin. Nutr. 2017. [CrossRef] [PubMed]
- Leite, H.P.; Nogueira, P.C.K.; de Oliveira Iglesias, S.B.; de Oliveira, S.V.; Sarni, R.O.S. Increased plasma selenium is associated with better outcomes in children with systemic inflammation. Nutrition 2015, 31, 485-490. [CrossRef] [PubMed]
- Dylewski, M.L.; Bender, J.C.; Smith, A.M.; Prelack, K.; Lydon, M.; Weber, J.M.; Sheridan, R.L. The Selenium Status of Pediatric Patients With Burn Injuries. J. Trauma Inj. Infect. Crit. Care 2010, 69,584-588. [CrossRef] [PubMed]
- Lockitch, G.; Jacobson, B.; Quigley, G.; Dison, P.; Pendray, M. Selenium deficiency in low birth weight neonates: An unrecognized problem. J. Pediatr. 1989,114, 865-870. [CrossRef]
- Darlow, B.A.; Inder, T.E.; Graham, P.J.; Sluis, K.B.; Malpas, T.J.; Taylor, B.J.; Winterbourn, C.C. The relationship of selenium status to respiratory outcome in the very low birth weight infant. Pediatrics 1995, 96, 314-319. [PubMed]
- Huston, R.K.; Jelen, B.J.; Vidgoff, J. Selenium supplementation in low-birthweight premature infants: Relationship to trace metals and antioxidant enzymes. JPEN J. Parenter. Enter. Nutr. 1991, 15, 556-559. [CrossRef] [PubMed]
- Daniels, L.; Gibson, R.; Simmer, K. Randomised clinical trial of parenteral selenium supplementation in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 1996, 74, F158-F164. [CrossRef] [PubMed]
- Bogye, G.; Alfthan, G.; Machay, T. Randomized clinical trial of enteral yeast-selenium supplementation in preterm infants. Biofactors 1998, 8,139-142. [CrossRef] [PubMed]
- Aggarwal, R.; Gathwala, G.; Yadav, S.; Kumar, P. Selenium Supplementation for Prevention of Late-Onset Sepsis in Very Low Birth Weight Preterm Neonates. J. Trop. Pediatr. 2016, 62,185-193. [CrossRef] [PubMed]
- Shaw, J.C. Trace elements in the fetus and young infant. II. Copper, manganese, selenium, and chromium. Am. J. Dis. Child. 1980,134, 74-81. [CrossRef] [PubMed]
- Hellman, N.E.; Gitlin, J.D. Ceruloplasmin metabolism and function. Annu. Rev. Nutr. 2002, 22, 439-458. [CrossRef] [PubMed]
- Reiser, S.; Smith, J.C.; Mertz, W.; Holbrook, J.T.; Schofield, D.J.; Powell, A.S.; Canfield, W.K.; Canary, J.J. Indices of copper status in humans consuming a typical American diet containing either fructose or starch. Am. J. Clin. Nutr. 1985, 42, 242-251. [PubMed]
- Henkin, R.I.; Schulman, J.D.; Schulman, C.B.; Bronzert, D.A. Changes in total, nondiffusible, and diffusible plasma zinc and copper during infancy. J. Pediatr. 1973, 82, 831-837. [CrossRef]
- Samman, S.; Roberts, D.C. The effect of zinc supplements on lipoproteins and copper status. Atherosclerosis 1988, 70, 247-252. [CrossRef]
- Prasad, A.S.; Brewer, G.J.; Schoomaker, E.B.; Rabbani, P. Hypocupremia induced by zinc therapy in adults. JAMA 1978, 240, 2166-2168. [CrossRef] [PubMed]
- Fischer, P.W.; Giroux, A.; L'Abbe, M.R. Effect of zinc supplementation on copper status in adult man. Am. J. Clin. Nutr. 1984, 40, 743-746. [PubMed]
- Sann, L.; Rigal, D.; Galy, G.; Bienvenu, F.; Bourgeois, J. Serum copper and zinc concentration in premature and small-for-date infants. Pediatr. Res. 1980,14,1040-1046. [CrossRef] [PubMed]
- L'Abbe, M.R.; Friel, J.K. Copper status of very low birth weight infants during the first 12 months of infancy. Pediatr. Res. 1992, 32,183-188. [CrossRef] [PubMed]
- Soo, T.L.; Simmer, K.; Carlson, L.; McDonald, L. Copper and very low birthweight babies. Arch. Dis. Child. 1988, 63,79-81. [CrossRef] [PubMed]
- Hillman, L.S.; Martin, L.; Fiore, B. Effect of oral copper supplementation on serum copper and ceruloplasmin concentrations in premature infants. J. Pediatr. 1981, 98, 311-313. [CrossRef]
- Manser, J.I.; Tran, N.N.; Kotwal, M.; Hall, L. Copper supplementation in premature infants. J. Pediatr. 1982, 100,511. [CrossRef]
Micronutrients (such as Vitamin D) for critically ill children – review Oct 20176991 visitors, last modified 24 Jan, 2020, This page is in the following categories (# of items in each category) - Vitamin D and Omega-3 category listing has